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ABSTRACT
With the popularity of face recognition technology, people
have put forward higher requirements for the security of face
recognition system. Face anti-spoofing detection attracts ex-
tensive attention and many methods been proposed. However,
these methods perform poorly in cross scenes. To solve this
problem, we propose a face anti-spoofing detection algorithm
based on domain adaptation. We apply Maximum Mean Dis-
crepancy (MMD) to multi-layer network distribution adapta-
tion, which improves the generalization ability of the model.
To further improve the performance of face anti-spoofing de-
tection, we fuse the low-level features with the high-level fea-
tures of convolutional neural network for face anti-spoofing
detection. Two widely used datasets are used to test the pro-
posed method. The experimental results show that the pro-
posed algorithm outperforms state-of-the-art approaches.

Index Terms— face anti-spoofing detection, deep learn-
ing, domain adaptation, Maximum Mean Discrepancy

1. INTRODUCTION

With the wide application of face recognition, the security
of face recognition systems has become more and more im-
portant. Face recognition technology is mainly based on im-
age information, so it is very vulnerable to attack. The at-
tacker usually uses the fake face images or videos to cheat
face recognition systems. Face anti-spoofing detection is to
prevent the system from being cheated, which is an import
part of the face recognition system.

Face liveness detection attracts extensive attention and
many methods have been proposed. Traditional face
anti-spoofing detection approaches include motion based
method [1], texture based method [2] and multi-clue based
method [3]. Deep learning based methods have also been
adopted for face anti-spoofing detection [4].

Generally, the state-of-the-art methods have achieved sat-
isfactory results in a specific scene. However, the trained
model performs poorly in cross scenes [3, 4, 5] where the
model is trained on one data set and tested on another. For

example, the model [4] trained on Replay [6] has a Half Total
Error Rate (HTER) of 2.1% on Replay, while has a HTER of
45.5% tested on CBSR [7]. The main reason for the poor gen-
eralization of the model is that the two datasets are collected
under different environments, different devices and different
distances from subject to camera, which results in inconsis-
tent data distribution. Thus, cross scenes anti-spoofing detec-
tion is the focus of current research.

In order to improve the generalization ability in the cross
scenes, domain adaptation is applied to face anti-spoofing de-
tection. Domain adaptation can improve the generalization
ability of the model by narrowing the data distribution differ-
ence of source domain and target domain. In [8], the authors
proposed to apply MMD [9] to handle the face anti-spoofing
detection. However, [8] only adopted MMD in the last full
connected layer and ignored the impact of other full con-
nected layers on data distribution. The fully connected lay-
ers will expand the distribution difference between the source
domain and the target domain [10], which further result in
poor generalization ability of the face anti-spoofing detec-
tion. To narrow the distribution differences between source
domain and the target domain, we apply MMD to the mul-
tilayer full connected layers (ML-MMD). In this paper, ML-
MMD is adopted to map the features of the source and target
domains to the Reproducing Kernel Hilbert Space (RKHS)
and minimize the distribution differences of two domains.

Besides, there are many differences in the details between
the genuine face images and the fake face ones. To fur-
ther improve the performance of face anti-spoofing detection,
we fuse the low-level features with the high-level features of
CNN for face anti-spoofing detection. Experimental results
show that the proposed method have achieved advanced gen-
eralization ability.

The rest of this paper is organized as follows. In Section
II, we briefly review the related works on face anti-spoofing
detection. In Section III, the proposed multi-layer domain
adaptation algorithm is introduced. Quantitative experimen-
tal results and comparative experimental results are shown in
Section IV and Section V conclude this paper.



2. RELATED WORKS

Due to the diversity of spoofing attacks, in the past few years,
numerous face anti-spoofing detection techniques have been
proposed. we categorize existing face anti-spoofing detection
methods into four categories: motion based, texture based,
deep learning based and domain adaptation based.

Motion based Face Anti-spoofing: The main idea of the
motion-based approach is to use the distinguished motion fea-
ture between genuine faces and fake faces. As compared to
fake faces, genuine faces have subtle motions such as blink-
ing, lip movements, and head rotation. In [11], the subtle
movements of different facial parts were extracted as impor-
tant features under the assumption that the genuine and fake
faces can be distinguished by the movement cues. More re-
cently, a novel motion-based countermeasure which exploits
natural and unnatural motion cues is presented in [1].

Although motion based methods are effective against the
attacks of video replay, they may suffer degraded perfor-
mance when the spoofing attack is conducted by printing
photo.

Texture based Face Anti-spoofing: In [12] the authors
used a total-variation based decomposition method and the
difference-of-Gaussian (DoG) filter to extract potential high-
frequency features in the face image, and then a sparse low
rank bilinear discriminative model was trained for the classi-
fication.

After that, [5] applied multi-scale local binary patterns
features for face anti-spoofing, which performed better than
most existing methods. Dynamic texture recognition using
volume local binary count patterns is applied to 2D face
spoofing detection in [13].

Though the above texture feature descriptors can effec-
tively detect different manner of attacks, they could be very
sensitive to different illuminations and other external noises.

Deep learning based Face Anti-spoofing: Recently,
CNN has achieved great performance in computer vision
tasks [14], and deep learning based methods have also been
adopted for face anti-spoofing detection. In [4], the CNN was
first utilized as a feature extractor for face anti-spoofig detec-
tion.

And in [15], the authors proposed an LSTM-CNN ar-
chitecture which utilized temporal information to conduct a
joint prediction for multiple frames of a video and achieve re-
markable improvements in the intra-test. Although the CNN-
based face anti-spoofing detection research has achieved ex-
cellent results, it is difficult to retrain as the existing face anti-
spoofing database is small.

Domain adaptation based Face Anti-spoofing: To solve
this problem of poor generalization ability of cross scenes
detection, domain adaptation methods are used in the field
of face anti-spoofing detection, but few related articles have
been published. [16] proposed a person-specific face anti-
spoofing approach. They assumed that for an individual sub-

ject, there was a linear relationship between the genuine and
fake samples. In [17], the generalization ability of face anti-
spoofing is improved by mapping the extracted features in
the similar distributed subspace and narrowing the data distri-
bution. Considering the spatial and temporal characteristics
of samples, [8] proposed a 3D CNN for face anti-spoofing
detection. They further improved the generalization of the
face anti-spoofing detection by adding regular term in the loss
function.

3. PROPOSED METHOD

The proposed algorithm framework is shown in Figure 1. Our
method consists of two parts: feature fusion and domain adap-
tation. For the feature fusion part, we train an improved CNN
to extract the useful information of low-level which are capa-
ble of discriminating genuine and fake face images. For the
domain adaptation part, we apply ML-MMD to narrow data
distribution differences and improve the generalization ability
of the model in cross scenes.

3.1. Feature fusion

There are many differences in the details between the real face
images and the fake face ones. To extract more detail features,
we add two skip connections after the first two pooling lay-
ers. The skip connections help the network to utilize extracted
features from layers with different depths, whiche is similar
to the FCN structure [18].

Face detection is first conducted to obtain the face region.
Then, the face region is fed into the convolution layers which
is extended by feature fusion. We pooled the low-level fea-
tures to ensure that the features of the fusion layer have the
same dimensions. Next, we add the features of the last three
layers of convolution. Finally, the fused features are fed into
fully connected layer and we apply the domain adaption.

3.2. Domain adaptation

To solve the problem of poor performance of face anti-
spoofing detection in cross scenes, we apply unsupervised
domain adaption to minimize the distribution distance be-
tween the two data sets. In this paper, the source domain
Ds = {(xsi , ysi )}

ns
i=1 are given with labeled examples and

the target domain Dt = {xtj}
nt
j=1 are unlabeled examples.

The samples of the source domain and the target domain are
sampled from the probability distributions of p and q, respec-
tively.

3.2.1. Maximum mean discrepancy

The MMD function [9] can measure the distance between two
probability distributions. To improve the generalization abil-
ity of the model, we narrow the distribution differences be-
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Fig. 1. The framework of the proposed method.

tween source and target domains by minimizing the MMD
distance.

MMD[F, p, q] := sup
f∈F

(Ep[f(Ds)]− Eq[f(Dt)]), (1)

where F is the set of functions that map the eigenspace to the
set of real numbers. If p = q, it means that Ds and Dt are
distributed in the same eigenspace with the same expectation,
thus, MMD = 0. If p 6= q, we need to give F a constraint.
In [9], the authors proved that F belongs to the unit sphere in
RKHS. In the RKHS space,

f(x) =< f,ϕ(x)>h, (2)

where ϕ(x) refers to the embedding function which maps the
data from feature space to the RKHS.

In this paper, we map the sample features to the RKHS
space and then calculate the distribution distance. Hence the
distance of MMD in RKHS is expressed as:

MMD[F, p, q] = sup
||f ||h≤1

(Ep[f(Ds)]− Eq[f(Dt)])

= sup
||f ||h≤1

(Ep[< ϕ(Ds), f>h]− Eq[< ϕ(Dt), f>h])

= sup
||f ||h≤1

(< up − uq, f>h)

= ||up − uq||h. (3)

To be specific, up means Ep[ϕ(Ds)] and uq means
Eq[ϕ(Dt)].

3.2.2. Multi-layer domain adaptation

The MMD can improve the generalization ability of the model
in cross scenes and previous work [8] showed its effective-

ness on face anti-spoofing detection. However, [8] only ap-
plied MMD to the last fully connected layer, without consid-
ering the impact of other layers on the data distribution. The
adaptation for the last full connected layer can not eliminate
the distribution differences between the source and target do-
mains, since there are other fully connected layers that are not
transferable.

In [10], the authors proved that the fully connected layers
will expand the distribution difference between the source do-
main and the target domain, which further results in poor gen-
eralization ability of the face anti-spoofing detection. There-
fore, to narrow the distribution differences between source
domain and the target domain, we apply ML-MMD in the
network. The advantage of multi-layer adaptation is that by
combining the representation layer with the classifier layer,
we can essentially build the bridge for the domain discrep-
ancy underlying both the marginal and conditional distribu-
tions, which is crucial for eliminating distribution differences.

Our architecture (see Figure 1) consists of five convolu-
tion layers and three full connected layers. The convolution
layers weights are shared by source domain and target do-
main. We use the source domain data to compute the classifi-
cation loss and all data to compute the domain loss. The total
loss function is composed of domain loss and the classifica-
tion loss.

L=Lc + λ

l2∑
l=l1

MMD2
k(D

s
l , D

t
l ), (4)

where λ > 0 is a penalty parameter, l1 and l2 represent in-
dexes for the network layer. In our implementation, we set l1
= 6 and l2 = 8. Lc is the classification loss function. Ds

l and
Dt

l represent the data of source domain and target domain at
layer l, respectively.



3.3. Implementation details

In this paper, we use the face detection algorithm [19] to de-
tect the face localization in each video frame. To eliminate the
interference of background information we cut out the face
part and resize it to 227 × 227 as the network input.

The weight λ of the ML-MMD regularization term is set
in the way where at the end of training, the classification loss
and ML-MMD regularization term loss are approximately the
same. Such setting is reasonable since the feature representa-
tion has both discrimination and generalization ability can be
learned. More specifically, the weight λ is selected in {0.1,
0.4, 0.7, 1, 1.4, 1.7, 2}. The learning rate is 0.0001 and de-
cays 10% every 10 epochs for both training and fine-tuning
procedure. The network is trained with the adaptive moment
estimation (Adam) method. The batch size of training data is
16 and the weight decay is set to 0.00005.

4. EXPERIMENTS RESULTS

4.1. Datasets and evalution criteria

In this paper, we validate our proposed method with extensive
experiments on two public face anti-spoofing databases: CA-
SIA Face Anti-Spoofing Database (CBSR) [7] and Replay-
Attack Database (Replay) [6].

The CBSR, which has a total of 50 human subjects, con-
sists of 600 video recordings of genuine and fake attacks and
each subject has 12 sequences (3 genuine and 9 fake ones).
Three fake attacks were designed: warped photo attacks, cut
photo attacks, and video attacks, as shown in Figure 2. The
genuine and the fake attacks were recorded using three cam-
era devices with: low, normal and high resolutions. The 50
subjects were divided into two subject-disjoint subsets for
training and testing (20 and 30, respectively).

Fig. 2. Samples from the CBSR. From the left to the right:
genuine faces and the corresponding warped photo, cut photo
and video replay attacks.

The Replay also contains 50 subjects, which were divided
into 3 subject-disjoint subsets for training, development and
testing (15, 15 and 20, respectively), and consists of 1300
video clips of genuine and fake attacks. The genuine videos
are recorded under two different lighting conditions: con-
trolled and adverse. Two type of attacks are created: replay

attacks and print attacks. In the replay attacks, high quality
videos of the genuine client are replayed on iPhone 3GS and
iPad display devices. For print attacks, the genuine images
are printed on A4 papers or reacquired by cameras.

Fig. 3. Samples from the Replay database. The first row
presents images taken from the controlled scenario, while the
second row corresponds to the images from the adverse sce-
nario.

To make a fair comparison with other methods, we fol-
lowed the overall protocol associated with the two databases.
On CBSR database, the results are evaluated in term of Equal
Error Rate (EER). The Replay provides a development set to
adjust the model parameters. Thus, the results are reported in
term of EER on the development set and HTER on the test
set.

HTER =
FRR(υ,D) + FAR(υ,D)

2
, (5)

where D denotes the used database and the value of υ is esti-
mated on the EER. FRR(υ,D) means the false rejection rate
for the genuine face and FAR(υ,D) means the false accep-
tance rate for the fake faces.

4.2. Results of intra-test

We perform intra testing on Replay and CBSR databases and
compare the proposed method with the state-of-the-art meth-
ods. Table 1 shows the EER and HTER of advanced face anti-
spoofing methods: the LBP+HOOF based mothod [20], the
IDA based method [3], the color analysis based methods [5, 2]
and the dynamic texture based mothd [13]. From Table 1, it
can be seen that our method outperforms many state-of-the-
art algorithms on the two challenging databases.

More specifically, for CBSR, our performance exceeds
most results with an EER of 3.7%, close to the best results
of [2]. On the Replay database, our proposed method outper-
forms other methods in EER and HTER, with only 0.3% and
0.6%, respectively. This shows that the features extracted by
our proposed method contain more discriminant information.



Table 1. Results of intra tests of different methods on the
datasets.

Replay CBSR
Method EER HTER EER

LBP+HOOF [20] - - 3.1
IDA [3] - 7.4 -
LBP [5] 1.5 5.1 8.8

Color texture [2] 0.4 2.8 2.1
Dynamic texture [13] 1.7 0.8 6.5

Ours 0.3 0.6 3.7

4.3. Results of inter-test

To demonstrate the generalization of our method, we con-
ducted a cross scenes evaluation. Table 2 shows the HTER
of inter-test on CBSR and Replay. When the model is trained
on Replay, the HTER on CBSR is 34.3%. And when the
model is trained on CBSR, the cross scenes performance on
Replay is 33.1%. The results show that the inter-test perfor-
mance of our method is better than other baseline methods.
Especially when the model is trained on Replay, the HTER
on the CBSR achieves the best, which demonstrates that the
proposed model possesses the capability of generalization.

Table 2. Results of HTER% inter tests of different methods
on the datasets.

train test train test
Method CBSR Replay Replay CBSR

LBP+HOOF [20] 35.4 44.6
IDA [3] 26.9 43.7
LBP [5] 37.9 35.4

Color texture [2] 30.3 37.7
Motion-based [1] 33.7 49.3

Ours 33.1 34.3

4.4. Ablation Study

To analyze effects of each components of the proposed
method, we conduct ablation studies on the Replay and CBSR
dataset. The qualitative results of intra-test and inter-test are
listed in Table 3 and Table 4, respectively.

First, we fine-tune the pre-training model with spoofing
data, and get acceptable results in the intra-test. This is possi-
bly due to the fact that the small difference between genuine
and fake faces in these two data sets. With a small amount of
data training, a network with classification capabilities can be
achieved.

In addition, we extend the network structure by fusing
low-level information (Only-fusion) to ensure adequate tex-
ture information and information integrity. From Table 3,
it can be seen that the low-level information are important
for face anti-spoofing detection. In particular, for the CBSR
dataset, EER decreased from 4.8% to 3.4%, which exceeds

most advanced methods. Although satisfactory results have
been obtained in the intra-test, the performance drops dra-
matically while dealing with cross scenes testing, as shown in
Table 4. This could be due to the fact that the model is over-
fitting and the distribution differences between the data sets
result in the learned features without generalization ability.

Table 3. Results of intra tests of different strategies on the
datasets.

Replay CBSR
EER HTER EER

Finetune 1.9 2.1 4.8
Only-fusion 0.9 0.8 3.4

Only-ML-MMD 1.7 3.3 3.8
All 0.3 0.6 3.7

Table 4 shows that adding the ML-MMD regular term
(only-ML-MMD) can significantly improve performance of
inter-test. Specifically, when using Replay for training, the
HTER for the tested CBSR dropped from 58.8% to 41.1%,
and the HTER dropped from 49.4% to 37.9% on Replay when
using CBSR for training. On the opposite, as shown in Ta-
ble 3, the intra-test performance decreased after the addition
of ML-MMD. This indicates that the regularization overem-
phasizes the similarity of the two data sets and ignores the
classification ability.

Table 4. Results of HTER% inter tests of different strategies
on the datasets.

train test train test
CBSR Replay Replay CBSR

Finetune 49.4 58.8
Only-fusion 43.9 60.1

Only-ML-MMD 37.9 41.1
All 33.1 34.3

The best results can be obtained in inter-test when com-
bining all strategies (All). In particular, the HTER is further
reduced to 33.1% and 34.3% on two datasets. This shows that
the features learned from the proposed model possess gener-
alization abilities.

5. CONCLUSION

In this paper, we propose a novel face anti-spoofing detec-
tion based on multi-layer domain adaption. This method ex-
tends AlexNet by fusing low-level features to get more tex-
ture information which is beneficial to distinguish subtle dif-
ferences. In addition, ML-MMD distance loss is adopted to
eliminate distribution differences cross scenes. Experimen-
tal results reveal that our method outperforms state-of-the-art
methods, and has obvious advantage on generalization ability.
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